Search results

1 – 5 of 5
Article
Publication date: 1 April 1990

E.N. STEFANOV and A.M. ASENOV

The coupled set of non‐linear 2D diffusion equations for donor and acceptor type impurities with initial and appropriated boundary conditions is solved by an implicit locally‐one…

Abstract

The coupled set of non‐linear 2D diffusion equations for donor and acceptor type impurities with initial and appropriated boundary conditions is solved by an implicit locally‐one dimensional finite difference method. Numerical experiments have been made to achieve a reasonable trade‐off between the desired accuracy and the CPU time. The algorithm was implemented to the process module of the 2‐D integrated process and device modeling system IMPEDANCE 2.0.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 9 no. 4
Type: Research Article
ISSN: 0332-1649

Article
Publication date: 24 August 2021

Kumar Neeraj and Jitendra Kumar Das

High throughput and power efficient computing devices are highly essential in many autonomous system-based applications. Since the computational power keeps on increasing in…

Abstract

Purpose

High throughput and power efficient computing devices are highly essential in many autonomous system-based applications. Since the computational power keeps on increasing in recent years, it is necessary to develop energy efficient static RAM (SRAM) memories with high speed. Nowadays, Static Random-Access Memory cells are predominantly liable to soft errors due to the serious charge which is crucial to trouble a cell because of fewer noise margins, short supply voltages and lesser node capacitances.

Design/methodology/approach

Power efficient SRAM design is a major task for improving computing abilities of autonomous systems. In this research, instability is considered as a major issue present in the design of SRAM. Therefore, to eliminate soft errors and balance leakage instability problems, a signal noise margin (SNM) through the level shifter circuit is proposed.

Findings

Bias Temperature Instabilities (BTI) are considered as the primary technology for recently combined devices to reduce degradation. The proposed level shifter-based 6T SRAM achieves better results in terms of delay, power and SNM when compared with existing 6T devices and this 6T SRAM-BTI with 7 nm technology is also applicable for low power portable healthcare applications. In biomedical applications, Body Area Networks (BANs) require the power-efficient SRAM design to extend the battery life of BAN sensor nodes.

Originality/value

The proposed method focuses on high speed and power efficient SRAM design for smart ubiquitous sensors. The effect of BTI is almost eliminated in the proposed design.

Details

International Journal of Intelligent Unmanned Systems, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 2049-6427

Keywords

Article
Publication date: 1 June 2003

Jaroslav Mackerle

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics…

1207

Abstract

This paper gives a bibliographical review of the finite element and boundary element parallel processing techniques from the theoretical and application points of view. Topics include: theory – domain decomposition/partitioning, load balancing, parallel solvers/algorithms, parallel mesh generation, adaptive methods, and visualization/graphics; applications – structural mechanics problems, dynamic problems, material/geometrical non‐linear problems, contact problems, fracture mechanics, field problems, coupled problems, sensitivity and optimization, and other problems; hardware and software environments – hardware environments, programming techniques, and software development and presentations. The bibliography at the end of this paper contains 850 references to papers, conference proceedings and theses/dissertations dealing with presented subjects that were published between 1996 and 2002.

Details

Engineering Computations, vol. 20 no. 4
Type: Research Article
ISSN: 0264-4401

Keywords

Article
Publication date: 4 January 2024

Shekwoyemi Gbako, Dimitrios Paraskevadakis, Jun Ren, Jin Wang and Zoran Radmilovic

Inland shipping has been extensively recognised as a sustainable, efficient and good alternative to rail and road modes of transportation. In recent years, various authorities and…

Abstract

Purpose

Inland shipping has been extensively recognised as a sustainable, efficient and good alternative to rail and road modes of transportation. In recent years, various authorities and academic researchers have advocated shifting from road to other sustainable modes like inland waterway transport (IWT) or rail transport. Academic work on modernisation and technological innovations to enhance the effectiveness and efficiency of waterborne transportation is becoming apparent as a growing body of literature caused by the need to achieve a sustainable transport system. Thus, it became apparent to explore the research trends on IWT.

Design/methodology/approach

A systematic and structured literature review study was employed in this paper to identify the challenges and concepts in modernising inland waterways for freight transportation. The review analysed 94 articles published in 54 journals from six well-known databases between 2010 and 2022.

Findings

The key findings of this review are that despite various challenges confronting the sector, there have been successful cases of technological advancement in the industry. The main interest among scholars is improving technical and economic performance, digitalisation, and safety and environmental issues. The review revealed that most of the literature is fragmented despite growing interest from practitioners and academic scholars. Academic research to address the strategic objectives, including strengthening competitiveness (shipbuilding, hydrodynamics, incorporating artificial intelligence into the decision-making process, adopting blockchain technology to ensure transparency and security in the transactions, new technologies for fleets adaptation to climate change, more effective handling, maintenance and rehabilitation technologies), matching growth and changing trade patterns (intermodal solutions and new logistics approaches) are major causes of concerns.

Originality/value

By employing the approach of reviewing previously available literature on IWT review papers, this review complements the existing body of literature in the field of IWT by providing in a single paper a consolidation of recent state-of-the-art research on technological developments and challenges for inland waterways freight transport in the intermodal supply chain that can act as a single resource to keep researchers up to date with the most recent advancements in research in the domain of inland waterway freight transport. Additionally, this review identified gaps in the literature that may inspire new research themes in the field of IWT.

Details

Benchmarking: An International Journal, vol. ahead-of-print no. ahead-of-print
Type: Research Article
ISSN: 1463-5771

Keywords

Article
Publication date: 2 March 2012

Giovanni Mascali and Vittorio Romano

This paper intends to present a hydrodynamical model which describes the hole motion in silicon and couples holes and electrons.

Abstract

Purpose

This paper intends to present a hydrodynamical model which describes the hole motion in silicon and couples holes and electrons.

Design/methodology/approach

The model is based on the moment method and the closure of the system of moment equations is obtained by using the maximum entropy principle (hereafter MEP). The heavy, light and split‐off valence bands are considered. The first two are described by taking into account their warped shape, while for the split‐off band a parabolic approximation is used.

Findings

The model for holes is coupled with an analogous one for electrons, so obtaining a complete description of charge transport in silicon. Numerical simulations are performed both for bulk silicon and a p‐n junction.

Research limitations/implications

The model uses a linear approximation of the maximum entropy distribution in order to close the system of moment equations. Furthermore, the non‐parabolicity of the heavy and light bands is neglected. This implies an approximation on the high field results. This issue is under current investigation.

Practical implications

The paper improves the previous hydrodynamical models on holes and furnishes a complete model which couples electrons and holes. It can be useful in simulations of bipolar devices.

Originality/value

The results of the paper are new since a better approximation of the band structure is used and a description of both electron and hole behavior is present, therefore the results are of a certain relevance for the theory of charge transport in semiconductors.

Details

COMPEL - The international journal for computation and mathematics in electrical and electronic engineering, vol. 31 no. 2
Type: Research Article
ISSN: 0332-1649

Keywords

1 – 5 of 5